Human monoclonal antibodies inhibit invasion of transgenic Plasmodium knowlesi expressing Plasmodium vivax Duffy binding protein
14 mins read

Human monoclonal antibodies inhibit invasion of transgenic Plasmodium knowlesi expressing Plasmodium vivax Duffy binding protein

  • Battle KE, Lucas TCD, Nguyen M, Howes RE, Nandi AK, Twohig KA, et al. Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. Lancet. 2019;394:332–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dini S, Douglas NM, Poespoprodjo JR, Kenangalem E, Sugiarto P, Plumb ID, et al. The risk of morbidity and mortality following recurrent malaria in Papua, Indonesia: a retrospective cohort study. BMC Med. 2020;18:28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moreira CM, Abo-Shehada M, Price RN, Drakeley CJ. A systematic review of sub-microscopic Plasmodium vivax infection. Malar J. 2015;14:360.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Howes RE, Reiner RC Jr, Battle KE, Longbottom J, Mappin B, Ordanovich D, et al. Plasmodium vivax transmission in Africa. PLoS Negl Trop Dis. 2015;9: e0004222.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Twohig KA, Pfeffer DA, Baird JK, Price RN, Zimmerman PA, Hay SI, et al. Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLoS Negl Trop Dis. 2019;13: e0007140.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zimmerman PA. Plasmodium vivax Infection in Duffy-Negative people in Africa. Am J Trop Med Hyg. 2017;97:636–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO. The potential impact of health service disruptions on the burden of malaria: a modelling analysis for countries in sub-Saharan Africa. Geneva: World Health Organization; 2020.

    Google Scholar 

  • WHO. A year without precedent: WHO’s COVID-19 response. Geneva: World Health Organization; 2020.

    Google Scholar 

  • WHO. World Malaria Report 2022. Geneva: World Health Organization; 2022.

    Google Scholar 

  • Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 2014;66:1–79.

  • Adams JH, Hudson DE, Torii M, Ward GE, Wellems TE, Aikawa M, et al. The Duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites. Cell. 1990;63:141–53.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adams JH, Sim BK, Dolan SA, Fang X, Kaslow DC, Miller LH. A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci USA. 1992;89:7085–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wertheimer SP, Barnwell JW. Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp Parasitol. 1989;69:340–50.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Henzler-Wildman KA, Tolia NH. Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. PLoS Pathog. 2014;10: e1003869.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batchelor JD, Zahm JA, Tolia NH. Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC. Nat Struct Mol Biol. 2011;18:908–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chitnis CE, Chaudhuri A, Horuk R, Pogo AO, Miller LH. The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J Exp Med. 1996;184:1531–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chitnis CE, Miller LH. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J Exp Med. 1994;180:497–506.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hans D, Pattnaik P, Bhattacharyya A, Shakri AR, Yazdani SS, Sharma M, et al. Mapping binding residues in the Plasmodium vivax domain that binds Duffy antigen during red cell invasion. Mol Microbiol. 2005;55:1423–34.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gosi P, Khusmith S, Khalambaheti T, Lanar DE, Schaecher KE, Fukuda MM, et al. Polymorphism patterns in Duffy-binding protein among Thai Plasmodium vivax isolates. Malar J. 2008;7:112.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xainli J, Adams JH, King CL. The erythrocyte binding motif of Plasmodium vivax Duffy binding protein is highly polymorphic and functionally conserved in isolates from Papua New Guinea. Mol Biochem Parasitol. 2000;111:253–60.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chootong P, Ntumngia FB, VanBuskirk KM, Xainli J, Cole-Tobian JL, Campbell CO, et al. Mapping epitopes of the Plasmodium vivax Duffy binding protein with naturally acquired inhibitory antibodies. Infect Immun. 2010;78:1089–95.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patarroyo MA, Molina-Franky J, Gomez M, Arevalo-Pinzon G, Patarroyo ME. Hotspots in Plasmodium and RBC receptor-ligand interactions: key pieces for inhibiting malarial parasite invasion. Int J Mol Sci. 2020;21:4729.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roesch C, Popovici J, Bin S, Run V, Kim S, Ramboarina S, et al. Genetic diversity in two Plasmodium vivax protein ligands for reticulocyte invasion. PLoS Negl Trop Dis. 2018;12: e0006555.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou MM, Barrett JR, Themistocleous Y, Rawlinson TA, Diouf A, Martinez FJ, et al. Impact of a blood-stage vaccine on Plasmodium vivax malaria. MedRxiv. 2022. https://doi.org/10.1101/2022.05.27.22275375.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen E, Salinas ND, Huang Y, Ntumngia F, Plasencia MD, Gross ML, et al. Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein. Proc Natl Acad Sci USA. 2016;113:6277–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ntumngia FB, Schloegel J, Barnes SJ, McHenry AM, Singh S, King CL, et al. Conserved and variant epitopes of Plasmodium vivax Duffy binding protein as targets of inhibitory monoclonal antibodies. Infect Immun. 2012;80:1203–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urusova D, Carias L, Huang Y, Nicolete VC, Popovici J, Roesch C, et al. Author correction: structural basis for neutralization of Plasmodium vivax by naturally acquired human antibodies that target DBP. Nat Microbiol. 2019;4:2024.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • King CL, Michon P, Shakri AR, Marcotty A, Stanisic D, Zimmerman PA, et al. Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer protection from blood-stage Plasmodium vivax infection. Proc Natl Acad Sci USA. 2008;105:8363–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin E, Kiniboro B, Gray L, Dobbie S, Robinson L, Laumaea A, et al. Differential patterns of infection and disease with P. falciparum and P. vivax in young Papua New Guinean children. PLoS ONE. 2010;5:e9047.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chootong P, Panichakul T, Permmongkol C, Barnes SJ, Udomsangpetch R, Adams JH. Characterization of inhibitory anti-Duffy binding protein II immunity: approach to Plasmodium vivax vaccine development in Thailand. PLoS ONE. 2012;7: e35769.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Sousa TN, Kano FS, de Brito CF, Carvalho LH. The Duffy binding protein as a key target for a Plasmodium vivax vaccine: lessons from the Brazilian Amazon. Mem Inst Oswaldo Cruz. 2014;109:608–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicolete VC, Frischmann S, Barbosa S, King CL, Ferreira MU. Naturally acquired binding-inhibitory antibodies to Plasmodium vivax Duffy Binding Protein and clinical immunity to malaria in rural Amazonians. J Infect Dis. 2016;214:1539–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carias LL, Dechavanne S, Nicolete VC, Sreng S, Suon S, Amaratunga C, et al. Identification and characterization of functional human monoclonal antibodies to Plasmodium vivax Duffy-Binding Protein. J Immunol. 2019;202:2648–60.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Payne RO, Silk SE, Elias SC, Milne KH, Rawlinson TA, Llewellyn D, et al. Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies. JCI Insight. 2017;2: e93683.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gruring C, Moon RW, Lim C, Holder AA, Blackman MJ, Duraisingh MT. Human red blood cell-adapted Plasmodium knowlesi parasites: a new model system for malaria research. Cell Microbiol. 2014;16:612–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohring F, Hart MN, Patel A, Baker DA, Moon RW. CRISPR-Cas9 genome editing of Plasmodium knowlesi. Bio Protoc. 2020;10: e3522.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moon RW, Hall J, Rangkuti F, Ho YS, Almond N, Mitchell GH, et al. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proc Natl Acad Sci USA. 2013;110:531–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rawlinson TA, Barber NM, Mohring F, Cho JS, Kosaisavee V, Gerard SF, et al. Structural basis for inhibition of Plasmodium vivax invasion by a broadly neutralizing vaccine-induced human antibody. Nat Microbiol. 2019;4:1497–507.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Menard D, Barnadas C, Bouchier C, Henry-Halldin C, Gray LR, Ratsimbasoa A, et al. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA. 2010;107:5967–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tiller T, Meffre E, Yurasov S, Tsuiji M, Nussenzweig MC, Wardemann H. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods. 2008;329:112–24.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wardemann H, Kofer J. Expression cloning of human B cell immunoglobulins. Methods Mol Biol. 2013;971:93–111.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smolarek D, Hattab C, Hassanzadeh-Ghassabeh G, Cochet S, Gutierrez C, de Brevern AG, et al. A recombinant dromedary antibody fragment (VHH or nanobody) directed against human Duffy antigen receptor for chemokines. Cell Mol Life Sci. 2010;67:3371–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ford TC, Rickwood D. Formation of isotonic Nycodenz gradients for cell separations. Anal Biochem. 1982;124:293–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Popovici J, Roesch C, Carias LL, Khim N, Kim S, Vantaux A, et al. Amplification of Duffy binding protein-encoding gene allows Plasmodium vivax to evade host anti-DBP humoral immunity. Nat Commun. 2020;11:953.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rangel GW, Clark MA, Kanjee U, Lim C, Shaw-Saliba K, Menezes MJ, et al. Enhanced ex vivo Plasmodium vivax intraerythrocytic enrichment and maturation for rapid and sensitive parasite growth assays. Antimicrob Agents Chemother. 2018. https://doi.org/10.1128/AAC.02519-17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res. 2020;48(W1):W488–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mendoza P, Gruell H, Nogueira L, Pai JA, Butler AL, Millard K, et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature. 2018;561:479–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mulangu S, Dodd LE, Davey RT, Tshiani Mbaya O, Proschan M, Mukadi D, et al. A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med. 2019;381:2293–303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med. 2021;384:238–51.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singh K, Mukherjee P, Shakri AR, Singh A, Pandey G, Bakshi M, et al. Malaria vaccine candidate based on Duffy-binding protein elicits strain transcending functional antibodies in a Phase I trial. NPJ Vaccines. 2018;3:48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou MM, Barrett JR, Themistocleous Y, Rawlinson TA, Diouf A, Martinez FJ, et al. Vaccination with Plasmodium vivax Duffy-binding protein inhibits parasite growth during controlled human malaria infection. Sci Transl Med. 2023;15:eadf1782.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang LT, Pereira LS, Flores-Garcia Y, O’Connor J, Flynn BJ, Schön A, et al. A potent anti-malarial human monoclonal antibody targets circumsporozoite protein minor repeats and neutralizes sporozoites in the liver. Immunity. 2020;53:733-44.e8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kisalu NK, Idris AH, Weidle C, Flores-Garcia Y, Flynn BJ, Sack BK, et al. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nat Med. 2018;24:408–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kayentao K, Ongoiba A, Preston AC, Healy SA, Doumbo S, Doumtabe D, et al. Safety and efficacy of a monoclonal antibody against malaria in Mali. N Engl J Med. 2022;387:1833–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaudinski MR, Berkowitz NM, Idris AH, Coates EE, Holman LA, Mendoza F, et al. A monoclonal antibody for malaria prevention. N Engl J Med. 2021;385:803–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agudelo M, Muecksch F, Schaefer-Babajew D, Cho A, DaSilva J, Bednarski E, et al. Plasma and memory antibody responses to Gamma SARS-CoV-2 provide limited cross-protection to other variants. J Exp Med. 2022. https://doi.org/10.1084/jem.20220367.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ketas TJ, Holuigue S, Matthews K, Moore JP, Klasse PJ. Env-glycoprotein heterogeneity as a source of apparent synergy and enhanced cooperativity in inhibition of HIV-1 infection by neutralizing antibodies and entry inhibitors. Virology. 2012;422:22–36.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kwong PD, Doyle ML, Casper DJ, Cicala C, Leavitt SA, Majeed S, et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature. 2002;420:678–82.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ramirez Valdez KP, Kuwata T, Maruta Y, Tanaka K, Alam M, Yoshimura K, et al. Complementary and synergistic activities of anti-V3, CD4bs and CD4i antibodies derived from a single individual can cover a wide range of HIV-1 strains. Virology. 2015;475:187–203.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van Rompay KKA, Olstad KJ, Sammak RL, Dutra J, Watanabe JK, Usachenko JL, et al. Early treatment with a combination of two potent neutralizing antibodies improves clinical outcomes and reduces virus replication and lung inflammation in SARS-CoV-2 infected macaques. PLoS Pathog. 2021;17: e1009688.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang LT, Pereira LS, Kiyuka PK, Schon A, Kisalu NK, Vistein R, et al. Protective effects of combining monoclonal antibodies and vaccines against the Plasmodium falciparum circumsporozoite protein. PLoS Pathog. 2021;17: e1010133.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willcox AC, Huber AS, Diouf A, Barrett JR, Silk SE, Pulido D, et al. Antibodies from malaria-exposed Malians generally interact additively or synergistically with human vaccine-induced RH5 antibodies. Cell Rep Med. 2021;2: 100326.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *